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Abstract. A 3D microstructure, measured by high-energy x-ray diffraction microscopy, is used as 

an input to a parallelized viscoplastic Fast Fourier Transform code (VPFFT) to simulate a tensile 

test.  Distributions of strain, damage accumulation, neighbor interactions, and Schmid factor 

mismatch throughout the microstructure are calculated.  These results will form the basis of a direct 

comparison to microstructure maps that track plastic deformation in the real sample. 

 

Introduction 

Microstructure plays an important role in determining the properties of polycrystalline materials. 

Our main goal here is to understand both the microstructural and mechanical aspects of initiation of 

ductile failure in materials.  Synchrotron radiation based High Energy Diffraction Microscopy 

(HEDM) [1,2], combined with tomography, has made it possible to non-destructively probe bulk 

materials and obtain both spatial as well as orientation information, which are invaluable in 

understanding the relationship between microstructure and damage accumulation during the early 

stages of failure. We use such a measurement of a Cu wire as the starting point for computational 

modeling, using recently developed and parallelized viscoplastic Fast Fourier Transform (VPFFT) 

code to simulate a tensile test. These calculations will be directly compared to HEDM maps of the 

deformed microstructures once they become available. 

  

Experimental 

In-situ measurements were performed at beam line 1-ID at the Advanced Photon Source at Argonne 

National Laboratory.  A 1 mm diameter, 99.9999% pure Cu wire was selectively electropolished in 

the middle of the length to neck it down to 210 µm diameter. A 300 µm long section of the wire 

was mapped to yield a three dimensional crystallographic orientation field.   

Simulation 

Simulation of viscoplastic deformation using the VPFFT method was conducted in order to 

compare experimental and simulated results. The VPFFT method has been described extensively 

elsewhere [3,7,8]. Experimental data was fed in as an input to the simulation and uniaxial 

deformation was modeled up to 50% strain with 1% strain steps. From the analysis, the relationship 

between stress gradient, average misorientation, distance from grain boundaries, and Schmid factor 

mismatch were quantified.  

Results and Discussions 

Using the measured microstructure from the HEDM experiment as an input to VPFFT, local 

fluctuations in stress and strain were simulated up to 50% strain.  Fig. 1 shows the orientation, 

misorientation, and stress maps obtained from VPFFT simulation for 3%, 10%, and 17% strain 

steps. The 2D sections were extracted from the necked region of  each simulated microstructure. 

This allowed us to make a qualitative analysis on the change in internal structures, damage 

accumulations, and stress concentrations as the strain increased in the material. 
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Fig.1: Orientation, misorientation and stress maps for 3%, 10% and 17% strains (left to right). (a)-

(c) Orientation maps. (d)-(f) Misorientation maps. (g)-(i) Stress field (units in MPa) maps.  

 

In Fig.1.(a)-(c), each color represents a different orientation in Rodriguez-Frank (RF) space.  The 

maps show that new orientations gradually develop as we increase the strain, which is evident at 

17% strain. Fig 1.(d)-(f) show the intra-granular misorientation development as we go higher in 

strain, which can also be associated with the deformation field developed during uniaxial tensile test 

[4]. Intra-granular misorientations arise due to the dislocation pile up within each grain in the 

microstructure.  Fig.1 (g)-(i) show the von-misses equivalent stress fields, for different deformation 

states. From these maps, it appears that stress and misorientation distributions show systematic 

variation throughout the microstructure. The results obtained from VPFFT simulation will be 

validated against the experimental data, once available.  

From the literature, we know that misorientation and stress field are correlated [4]. We are 

interested in understanding the initiation of failure, which can be hypothesized to be occurring at 

regions of high stresses and large misorientations. Fig. 2 plots the distance from the grain boundary 

versus kernel average misorientation (KAM) and stress gradient. These plots were generated for 

simulated results at the 50% strain step. Higher misorientation develops near grain boundaries, and 

decreases rapidly as we move farther away from the boundary. A similar correlation was observed 

between the stress gradient, which is calculated as the root mean square average of the difference in 

five stress components, and relative distance from the boundary.  
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Furthermore, Fig. 2c shows the relation between the average misorientation and gradient in stress, 

which is in agreement with the literature [4]. Thus, misorientation can also be seen as a measure of 

stress accumulation in the microstructure. These plots indicate that high deformation fields develop 

around grain boundaries, which are most likely to serve as failure initiation sites.  

 

 

In polycrystalline materials, grain interactions are important in understanding the fundamentals of 

failure initiation mechanisms, in the microstructure [5,6]. For one of our initial failure analysis 

attempts, a simple single crystal model is applied to study the orientation dependence on slip 

activation, and its relationship to the surrounding environment. Schmid factor mismatches were 

calculated between neighboring grains from VPFFT data. Additionally, only points adjacent to the 

grain boundaries were included in the KAM calculation.  In Fig. 3, we have plotted the difference in 

Schmid factor between neighboring grains versus the KAM for different strain steps. For a coarsely 

Fig. 2: Correlation plots. a)  & b) 

Distance from grain boundary versus 

average misorientation and stress 

gradient, respectively. c) Average 

misorientation versus magnitude of 

stress gradient.    

Fig. 3: Difference in 

Schmid factor versus 

kernel average 

misorientation. (a) 3% 

strain. (b) 10% strain. 

(c) 17% strain.   
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binned data, there appears to develop some linear relationships with strain, but overall no simple 

correlations were observed; thus, detailed statistical analysis might be required to further predict 

any significant relationship if present. 

 

Summary 

HEDM [1, 2] was used to provide an initial microstructure as input to a VPFFT simulation with the 

objective of simulating deformation and, eventually, the failure initiation process in ductile 

materials [3, 7].  High stresses and misorientations were observed near grain boundaries at small 

strains, but these correlations weaken as the strain level increases.  No significant correlation was 

found between the Schmid factor mismatch against KAM across different strain states.  However, a 

strong correlation was seen between the stress gradient and the average misorientation with the 

distance from grain boundaries, which are possible failure initiation sites. These preliminary results 

point to the efficacy of combining experiment with simulations with the aim of more effectively and 

accurately predicting failure in relation to microstructure.  
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